Home
Class 7
MATHS
If 2^(n)=4096 , then 2^(n-5) is...

If `2^(n)=4096` , then `2^(n-5)` is _____

A

128

B

64

C

256

D

32

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^n=4096 , t h e n\ 2^(n-5) = (a)128 (b) 64 (c)256 (d) 32

If sum_(r=0)^(n)(3^(r))(""^(n)C_(r))=4096 , then n=_______-

If S_(n) = 5n^(2) + 3n, then 2^(nd) term is …………… .

If a(n) =n(n+2) then find a(5)

Sum of coefficient of (x+y)^n=4096 then find the highest coefficient

If n/2 - (3n)/4 + (5n)/6 = 21 , then n = ?

If .^(n+1)P_(5):^(n)P_(5)=3:2 then n is: