Home
Class 7
MATHS
If 2^(2n-3)=2048 then (4n+3n^(2))=...

If `2^(2n-3)=2048` then `(4n+3n^(2))`= _____

A

175

B

25

C

125

D

75

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2^{2n-3} = 2048\) and find the value of \(4n + 3n^2\), we can follow these steps: ### Step 1: Express 2048 as a power of 2 First, we need to find the prime factorization of 2048. \[ 2048 = 2^{11} \] ### Step 2: Set the exponents equal Since we have \(2^{2n-3} = 2^{11}\), we can set the exponents equal to each other: \[ 2n - 3 = 11 \] ### Step 3: Solve for \(n\) Now, we can solve for \(n\): \[ 2n = 11 + 3 \] \[ 2n = 14 \] \[ n = \frac{14}{2} = 7 \] ### Step 4: Substitute \(n\) into the expression \(4n + 3n^2\) Now that we have \(n = 7\), we can substitute this value into the expression \(4n + 3n^2\): \[ 4n + 3n^2 = 4(7) + 3(7^2) \] ### Step 5: Calculate \(4n\) and \(3n^2\) Calculating each term: \[ 4(7) = 28 \] \[ 3(7^2) = 3(49) = 147 \] ### Step 6: Add the two results Now, we can add these two results together: \[ 4n + 3n^2 = 28 + 147 = 175 \] ### Final Answer Thus, the value of \(4n + 3n^2\) is: \[ \boxed{175} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2^(n+4)-2^(n+2)=3 Then find n

If n/2 - (3n)/4 + (5n)/6 = 21 , then n = ?

If z=-2+2sqrt(3)i, then z^(2n)+2^(2n)*z^(n)+2^(4n) is equal to

If ((2n)!)/(3!(2n-3)!) and (n!)/(2!(n-2)!) are in the ratio 44:3 find n.

If Delta_(m) = |(m -1,n,6),((m-1)^(2),2n^(2),4n -2),((m -1)^(3),3n^(3),3n^(2) - 3n)| , then Sigma_(m =1)^(n) Delta_(m) is equal to

If z=-2 + 2 sqrt3i then z^(2n) + z^(n) + 2^(4n) may be equal to

Let Delta_(a)=|{:((a-1),n,6),((a-1)^(2), 2n^(2),4n-2),((a-1)^(3),3n^(3),3n^(2)-3n):}| the value of sum_(a=1)^(n)Delta_(a) is

Find underset(n to oo)lim x_(n) if (a) x_(n)=(3n^(2)+5n+4)/(2+n^(2) (b) x_(n)=(5n^(3)+2n^(2)-3n+7)/(4n^(3)-2n+11) (c) x_(n)=(4n^(2)-4n+3)/(2n^(3)+3n+4) (d) x_(n)=(1^(2)+2^(2)+.....+n^(2))/(5n^(3)+n+1)

If A={p:p=((n+2)(2n^(5)+3n^(4)+4n^(3)+5n^(2)+6))/(n^(2)+2n), n p in Z^(+)} then the number of elements in the set A, is