Home
Class 7
MATHS
If a=(3^(-3)-3^(3)), and b=(3^3-3^(-3)) ...

If `a=(3^(-3)-3^(3))`, and `b=(3^3-3^(-3))` , then find the value of `(a)/(b)-(b)/(a)`.

A

0

B

1

C

`-1`

D

2

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of - (2a+3b) (2a-3b)

If a/b=2/3 then find the values of (4a+3b)/(3b)

If a^3+b^3:a^3-b^3=133:117 , then find the value of a:b

If a/b=3/4 then find the value of 7a-4b:3a+b .

If log(a^(3)-b^(3))-log3=(3)/(2)(log a+log b) find the value of ((a)/(b))^(3)+((b)/(a))^(3)

If a-b and ab=20, find the value of a^(3)-b^(3)

If log_(sqrt8) b = 3 1/3 , then find the value of b.

If det, (A-B) ne 0, A^(4)=B^(4), C^(3) A=C^(3)B and B^(3)A=A^(3)B , then find the value of det. (A^(3)+B^(3)+C^(3)) .