Home
Class 7
MATHS
(x^(-1)-y^(-1))/(z)+(y^(-1)-z^(-1))/(x)+...

`(x^(-1)-y^(-1))/(z)+(y^(-1)-z^(-1))/(x)+(z^(-1)-x^(-1))/(y)=`_______

A

1

B

`-1`

C

0

D

2

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x + y + z = xyz , prove that x(1 -y^(2)) (1- z^(2))+ y(1- z^(2))(1- x^(2)) +z(1-x^(2)) (1- y^(2)) = 4xyz .

If x+y+z=xyz, then value of (x)/(1-x^(2))+(y)/(1-y^(2))+(z)/(1-z^(2))(x)/(1-x^(2))(y)/(1-y^(2))(z)/(1-z^(2))

If x+y+z=xyz , prove by trignometry that: (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2)).(2y)/(1-y^(2)).(2z)/(1-z^(2))

If x+y+z=xyz prove that (2x)/(1-x^(2))+(2y)/(1-y^(2))+(2z)/(1-z^(2))=(2x)/(1-x^(2))(2y)/(1-y^(2))(2z)/(1-z^(2))

(1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then prove that (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-z)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If x,y,z are all different real numbers,then (1)/((x-y)^(2))+(1)/((y-z)^(2))+(1)/((z-x)^(2))=((1)/(x-y)+(1)/(y-z)+(1)/(z-x))^(2)

If cos^(-1)x+cos^(-1)y+cos^(-1)z=pi, then x^(2)+y^(2)+z^(2)+2xyz=12(sin^(-1)x+sin^(-1)y+sin^(-1)z)=cos^(-1)x+cos^(-1)y+cos^(-1)zxy+yz+zx=x+y+z-1(x+(1)/(x))+(y+(1)/(y))+(z+(1)/(z))>=6