Home
Class 7
MATHS
Find the value of (1)/(1+x^(a-b))+(1)/(1...

Find the value of `(1)/(1+x^(a-b))+(1)/(1+x^(b-a))`

A

0

B

`-1`

C

1

D

`x^(a+b)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( \frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} \), we can follow these steps: ### Step 1: Rewrite the Terms We start with the expression: \[ \frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} \] ### Step 2: Recognize the Relationship Between Exponents Notice that \( x^{b-a} = \frac{1}{x^{a-b}} \). This means we can rewrite the second term: \[ \frac{1}{1+x^{b-a}} = \frac{1}{1+\frac{1}{x^{a-b}}} \] ### Step 3: Simplify the Second Term Now simplify the second term: \[ \frac{1}{1+\frac{1}{x^{a-b}}} = \frac{x^{a-b}}{x^{a-b}+1} \] ### Step 4: Rewrite the Original Expression Now we can rewrite the original expression using this simplification: \[ \frac{1}{1+x^{a-b}} + \frac{x^{a-b}}{x^{a-b}+1} \] ### Step 5: Find a Common Denominator The common denominator for the two fractions is \( (1+x^{a-b})(x^{a-b}+1) \): \[ \frac{(x^{a-b}+1) + (1+x^{a-b})}{(1+x^{a-b})(x^{a-b}+1)} \] ### Step 6: Combine the Numerator Combine the terms in the numerator: \[ \frac{(x^{a-b}+1) + (1+x^{a-b})}{(1+x^{a-b})(x^{a-b}+1)} = \frac{2(x^{a-b}+1)}{(1+x^{a-b})(x^{a-b}+1)} \] ### Step 7: Simplify the Expression Notice that \( 1+x^{a-b} \) and \( x^{a-b}+1 \) are the same, so: \[ \frac{2(x^{a-b}+1)}{(1+x^{a-b})^2} \] ### Step 8: Final Result Thus, we can conclude that: \[ \frac{1}{1+x^{a-b}} + \frac{1}{1+x^{b-a}} = 1 \] ### Final Answer The value of the expression is \( 1 \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of (k)/(1-x^(a-b))+(k)/(1-x^(b-a))

If x^(2)+4x-1=0 and x is positive then find the value of a.x+(1)/(x) b.) x^(2)+(1)/(x^(2))

If x=(a-b)/(a+b), y=(b-c)/(b+c) and z=(c-a)/(c+a) , find the value of ((1+x)(1+y)(1+z))/((1-x)(1-y)(1-z))

If abx^(2)=(a-b)^(2)(x+1) , then find the value of 1+(4)/(x)+(4)/(x^(2)) in terms of a and b.

If 2x=a+a^(-1) and 2y=b+b^(-1) then find the value of xy+(sqrt((x^(2)-1)(y^(2)-1)))

If the lim_(x rarr0)(1)/(x^(3))((1)/(sqrt(1+x))-(1+ax)/(1+bx)) exists and has the value to 1,then find the value of (1)/(a)-(2)/(l)+(3)/(b)