Home
Class 7
MATHS
If 2^n)=1024, then 2^((n)/(2)+2=...

If `2^n)=1024`, then `2^((n)/(2)+2=`_______

A

64

B

128

C

256

D

512

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(2^(n)) =1024, then 3((n)/(4)-4) =______.

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=

If sqrt(2^(n))=1024, then 3^(2((n)/(4)-4))=3(b)9 (c) 27(d)81

If 2^n=1024 , t h e n\ 2^(n/2+2) = (a)64 (b) 128 (c)256 (d) 512

2 ^(16-log_(2)1024) = ______

If sqrt(4^n) = 1024, then n is equal to

(1) If 5^(n+2)=625, find [(n+3)]^((1)/(3)):(2) If ((32)/(243))^(n)=(8)/(27), find ((n+0.4)/(1024))^(-n)

(sqrt(1024)-sqrt(24))^(2//3)(sqrt(1024)+sqrt(24))^(2//3)= ___________

(2^(n)+2^(n-1))/(2^(n+1)-2^(n))