Home
Class 11
MATHS
C0^nCn^(n+1) +C1^nC(n-1)^n + C2^n.C(n-2)...

`C_0^nC_n^(n+1) +C_1^nC_(n-1)^n + C_2^n.C_(n-2)^(n-1)+.........+C_n^n.C_0^1 = 2^(n-1) (n+2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

prove that C_(0)C_(n)+C_(1)C_(n-1)+C_(2)C_(n-2)+.........+C_(n)C_(0)=2nC_(n)

""^n C_0- ^n C_1 + ^n C_2.....(-1)^n ""^n C_n=

Prove that ^nC_(0)^(2n)C_(n)-^(n)C_(1)^(2n-1)C_(n)+^(n)C_(2)xx^(2n-2)C_(n)++(-1)^(n)sim nC_(n)^(n)C_(n)=1

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

If (1+x)^n =C_0+C_1 x+ C_2 x^2 +....... C_nx^n prove the following : C_0C_n+C_1C_(n-1)+C_2C_(n-2)+.....+ C_nC_0= ((2n!))/(n!)^2 .

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(0).C_(n)+C_(1).C_(n-1)+C_(2).C_(n-2)+....+C_(n).C_(0)=((2n)!)/((n!)^(2))

Prove that ^nC_(0)^(n)C_(0)-^(n+1)C_(1)^(n)C_(1)+^(n+2)C_(2)^(n)C_(2)-...=(-1)^(n)

If (1+x)^(n)=C_(0)+C_(1)x+C_(2)x^(2)+.....+C_(n)x^(n) then show : C_(1)+2.C_(2)+3.C_(3)+....+n.C_(n)=n.2^(n-1)

If (1+x)^(n)=^(n)C_(0)+^(n)C_(1)x+^(n)C_(2)x^(2)+…+^(n)C_(n)x^(n) , prove that, nC_(0) +2^(n)C_(1)+3^(n)C_(2)+…+(n+1)^(n)C_(n)=(n+2)*2^(n-1) .