Home
Class 8
MATHS
root3(3.43)/root(3)(10)=…………....

`root3(3.43)/root(3)(10)=………….`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{\sqrt[3]{3.43}}{\sqrt[3]{10}} \), we will follow these steps: ### Step 1: Convert the decimal to a fraction We can express \( 3.43 \) as \( \frac{343}{100} \). This is because moving the decimal two places to the right gives us \( 343 \), and we divide by \( 100 \) to maintain the value. **Hint:** To convert a decimal to a fraction, count how many places the decimal moves to the right and use that as the denominator (e.g., \( 0.01 \) becomes \( \frac{1}{100} \)). ### Step 2: Rewrite the expression Now we can rewrite the expression as: \[ \frac{\sqrt[3]{\frac{343}{100}}}{\sqrt[3]{10}} \] **Hint:** When dividing cube roots, you can combine them into one cube root: \( \frac{\sqrt[3]{a}}{\sqrt[3]{b}} = \sqrt[3]{\frac{a}{b}} \). ### Step 3: Combine the cube roots This gives us: \[ \sqrt[3]{\frac{343}{100 \cdot 10}} = \sqrt[3]{\frac{343}{1000}} \] **Hint:** When multiplying fractions, multiply the numerators together and the denominators together. ### Step 4: Simplify the cube root Next, we recognize that \( 1000 = 10^3 \), so we can rewrite the expression as: \[ \sqrt[3]{\frac{343}{10^3}} = \frac{\sqrt[3]{343}}{\sqrt[3]{1000}} \] **Hint:** Remember that \( \sqrt[3]{a^3} = a \). ### Step 5: Calculate the cube roots We know that \( 343 = 7^3 \), so \( \sqrt[3]{343} = 7 \), and \( \sqrt[3]{1000} = 10 \). Thus, we have: \[ \frac{7}{10} \] **Hint:** To find the cube root of a number, look for perfect cubes or factor the number into prime factors. ### Final Answer The final result is: \[ \frac{7}{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

root3(3(3)/8)=

root(4)(root(3)(3^2))

root(3)(135)-:root(3)(5)

root(3)(4)times root(3)(16)

root3((64)/(343))=?

root3((-343)/(729))=?

Find the value of (root(3)(125)times root(3)(64))/(root(3)(125)-root(3)(64))

root(3)(1331)xx root(3)(216)+root(3)(729)+root(3)(64) is equal to