Home
Class 8
MATHS
root3(-m^6)=……….....

`root3(-m^6)=………..`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{-m^6} \), we can follow these steps: ### Step-by-Step Solution: 1. **Rewrite the expression**: Start with the expression \( \sqrt[3]{-m^6} \). \[ \sqrt[3]{-m^6} = (-m^6)^{\frac{1}{3}} \] 2. **Apply the power of a product rule**: We can separate the negative sign and the variable: \[ (-m^6)^{\frac{1}{3}} = (-1)^{\frac{1}{3}} \cdot (m^6)^{\frac{1}{3}} \] 3. **Evaluate the cube root of -1**: The cube root of -1 is -1. \[ (-1)^{\frac{1}{3}} = -1 \] 4. **Evaluate the cube root of \( m^6 \)**: Using the power rule \( (a^m)^n = a^{m \cdot n} \): \[ (m^6)^{\frac{1}{3}} = m^{6 \cdot \frac{1}{3}} = m^2 \] 5. **Combine the results**: Now combine the results from steps 3 and 4: \[ \sqrt[3]{-m^6} = -1 \cdot m^2 = -m^2 \] ### Final Answer: \[ \sqrt[3]{-m^6} = -m^2 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(root3(3)+root3(2))(root3(9)+root3(4)-root3(6))=

sqrt(m^(2)n^(2))times root(6)(m^(2)n^(2))times root(3)(m^(2)n^(2))

If root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9) xx2^(3)))=(3/8)^(k) ,then k = _______ .

Evaluate: (6^(2/3) xx root(3)((6)^(7)))/(root(3)(6^(6)))

root(3)(6)xxroot(3)(6)xxroot(3)(6) =_______

If root3((a^(6) xx b^(3) xx c^(21))/(c^(9) xx a^(12)))=(bc^(k))/a^(k//2') then k=______ .