Home
Class 8
MATHS
root3((-a^6 xx b^3 xx c^(21))/(c^9 xx a^...

`root3((-a^6 xx b^3 xx c^(21))/(c^9 xx a^(12)))=………`

A

`(-bc^3)/(a^2)`

B

`(bc^4)/(a^2)`

C

`(-ab^4)/c^2`

D

`(-bc^4)/(a^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{\frac{-a^6 \cdot b^3 \cdot c^{21}}{c^9 \cdot a^{12}}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt[3]{\frac{-a^6 \cdot b^3 \cdot c^{21}}{c^9 \cdot a^{12}}} \] ### Step 2: Simplify the fraction inside the cube root We can separate the numerator and the denominator: \[ = \sqrt[3]{-a^6 \cdot b^3 \cdot c^{21}} \div \sqrt[3]{c^9 \cdot a^{12}} \] ### Step 3: Simplify the terms Now we can simplify the terms: \[ = \frac{\sqrt[3]{-a^6} \cdot \sqrt[3]{b^3} \cdot \sqrt[3]{c^{21}}}{\sqrt[3]{c^9} \cdot \sqrt[3]{a^{12}}} \] ### Step 4: Apply the cube root to each term Using the property \( \sqrt[3]{x^n} = x^{n/3} \): \[ = \frac{-a^{6/3} \cdot b^{3/3} \cdot c^{21/3}}{c^{9/3} \cdot a^{12/3}} \] ### Step 5: Simplify the powers This simplifies to: \[ = \frac{-a^2 \cdot b^1 \cdot c^7}{c^3 \cdot a^4} \] ### Step 6: Combine like terms Now we can simplify the expression further: \[ = \frac{-b \cdot c^7}{c^3 \cdot a^4} \cdot \frac{1}{a^2} \] This gives us: \[ = -b \cdot c^{7-3} \cdot a^{-4-2} \] \[ = -b \cdot c^4 \cdot a^{-6} \] ### Step 7: Rewrite the expression Finally, we can rewrite it as: \[ = -\frac{b \cdot c^4}{a^6} \] Thus, the final answer is: \[ \sqrt[3]{\frac{-a^6 \cdot b^3 \cdot c^{21}}{c^9 \cdot a^{12}}} = -\frac{b \cdot c^4}{a^6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9) xx2^(3)))=(3/8)^(k) ,then k = _______ .

(3^8 xx b^6)/(9^3 xx b^4)

root3(144) xx root3(12) equals

Find each of the following products: (a) 3 xx (-1) (b) (-1) xx 225 (c) (-21) xx (-30) (d) (-316) xx (-1) (e) (-15 xx 0 xx (-18) (f) (-12) xx (-11) xx (10) (g) 9 xx (-3) xx (-6) (h) (-18) xx (-5) xx (-4) (i) (-1) xx (-2) xx (-3) xx 4 (j) (-3) xx (-6) xx (-2) xx (-1)

Find the products (ab^(2)) xx(-b^(2)c)xx(-a^(2)c^(3)) xx(-3abc)