Home
Class 8
MATHS
If (x^(y))^z =2^(8)then find the maximum...

If `(x^(y))^z =2^(8)`then find the maximum possible value of (x)(y)(z) where x,y,z`gt`0

A

16

B

12

C

256

D

24

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y +z= 21 then find the maximum value of (x-2) (y-1) (z+ 9)

If x , y, z in R, x + y + z= 4 and x^(2) + y^(2) + z^(2) = 6 , then the maximum possible value of z is

If x+y+z=3 and x,y,z in R , the maximum value of ((x+y)(y+z)(z+x))/(8) is:

" If "x,y,z in R^(+)" such that "x+y+z=4" ,then maximum possible value of "xyz^(2)" is - "

If 4x+3y+12z=26, x, y, z, in R , then minimum possible value of x^(2)+y^(2)+z^(2) is __________

If xyz=0 , then find the value of [(k^(x))^y]^z-[(k^(y))^z]^x-[(k^(z))^x]^(y)

If 3x+4y+z=5, where x,y,z in R, then minimum value of 26(x^(2)+y^(2)+z^(2)) is

If (x+y-z)^(2) +(y+z-x)^(2) +(z+x-y)^(2)=0 then what is the value of x+y+z ?