Home
Class 8
MATHS
root3((3^6 xx 4^3 xx 2^6)/(8^9 xx 2^3))=...

`root3((3^6 xx 4^3 xx 2^6)/(8^9 xx 2^3))=……….`

A

`3/8`

B

`9/8`

C

`3/(64)`

D

`9/(64)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt[3]{\frac{3^6 \times 4^3 \times 2^6}{8^9 \times 2^3}} \), we will follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt[3]{\frac{3^6 \times 4^3 \times 2^6}{8^9 \times 2^3}} \] ### Step 2: Simplify the base of 8 We know that \( 8 = 2^3 \). Therefore, we can rewrite \( 8^9 \) as: \[ 8^9 = (2^3)^9 = 2^{27} \] Now, substituting this back into the expression, we have: \[ \sqrt[3]{\frac{3^6 \times 4^3 \times 2^6}{2^{27} \times 2^3}} \] ### Step 3: Combine the powers of 2 in the denominator The denominator can be simplified: \[ 2^{27} \times 2^3 = 2^{27 + 3} = 2^{30} \] So, the expression now looks like: \[ \sqrt[3]{\frac{3^6 \times 4^3 \times 2^6}{2^{30}}} \] ### Step 4: Rewrite 4 in terms of 2 Since \( 4 = 2^2 \), we can rewrite \( 4^3 \) as: \[ 4^3 = (2^2)^3 = 2^6 \] Substituting this back into the expression gives us: \[ \sqrt[3]{\frac{3^6 \times 2^6 \times 2^6}{2^{30}}} \] ### Step 5: Combine the powers of 2 in the numerator Now, we can combine the powers of 2 in the numerator: \[ 2^6 \times 2^6 = 2^{6 + 6} = 2^{12} \] Thus, the expression simplifies to: \[ \sqrt[3]{\frac{3^6 \times 2^{12}}{2^{30}}} \] ### Step 6: Simplify the fraction Now, we can simplify the fraction: \[ \frac{2^{12}}{2^{30}} = 2^{12 - 30} = 2^{-18} \] So the expression now looks like: \[ \sqrt[3]{3^6 \times 2^{-18}} \] ### Step 7: Apply the cube root We can apply the cube root to both parts of the expression: \[ \sqrt[3]{3^6} \times \sqrt[3]{2^{-18}} = 3^{6/3} \times 2^{-18/3} = 3^2 \times 2^{-6} \] ### Step 8: Final simplification Now, we can express this as: \[ 3^2 \times \frac{1}{2^6} = \frac{3^2}{2^6} = \frac{9}{64} \] ### Final Answer Thus, the final answer is: \[ \frac{9}{64} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If root3((3^(6) xx 4^(3) xx 2^(6))/(8^(9) xx2^(3)))=(3/8)^(k) ,then k = _______ .

(3^8 xx b^6)/(9^3 xx b^4)

3sqrt((3^(6)xx4^(3)xx2^(6))/(8^(9)xx2^(3)) =____________

If root3((a^(6) xx b^(3) xx c^(21))/(c^(9) xx a^(12)))=(bc^(k))/a^(k//2') then k=______ .

2/3 xx 6/8 xx2/3xx3/4 = ?

Simplify frac(2^-3 xx 3^-2 xx 2^6)(6^2 xx 9 xx 3^-5

6.4 xx 3.8 xx 4.2 xx 0.3 =

Find the unit digit of 3^6 xx 4^7 xx 6^3 xx 7^4 xx 8^2 xx 9^5 .