Home
Class 8
MATHS
simplify 64^((2)/(3)) xx 64^((1)/(3)) xx...

simplify `64^((2)/(3)) xx 64^((1)/(3)) xx 64^((-5)/(3))=` _____

A

`(1)/(64)`

B

`(1)/(16)`

C

32

D

`(1)/(32)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 64^{\frac{2}{3}} \times 64^{\frac{1}{3}} \times 64^{-\frac{5}{3}} \), we can follow these steps: ### Step 1: Apply the property of indices We know that when multiplying powers with the same base, we can add the exponents. Therefore, we can rewrite the expression as: \[ 64^{\frac{2}{3} + \frac{1}{3} - \frac{5}{3}} \] ### Step 2: Simplify the exponent Now, we need to simplify the exponent: \[ \frac{2}{3} + \frac{1}{3} - \frac{5}{3} = \frac{2 + 1 - 5}{3} = \frac{-2}{3} \] ### Step 3: Rewrite the expression Now, substituting the simplified exponent back into the expression, we have: \[ 64^{-\frac{2}{3}} \] ### Step 4: Convert to a positive exponent Using the property that \( a^{-n} = \frac{1}{a^n} \), we can rewrite the expression as: \[ \frac{1}{64^{\frac{2}{3}}} \] ### Step 5: Simplify \( 64^{\frac{2}{3}} \) Next, we need to simplify \( 64^{\frac{2}{3}} \). We can express \( 64 \) as \( 4^3 \): \[ 64^{\frac{2}{3}} = (4^3)^{\frac{2}{3}} = 4^{3 \cdot \frac{2}{3}} = 4^2 \] ### Step 6: Calculate \( 4^2 \) Now, we calculate \( 4^2 \): \[ 4^2 = 16 \] ### Step 7: Final expression Thus, we have: \[ 64^{-\frac{2}{3}} = \frac{1}{16} \] ### Final Answer The simplified expression is: \[ \frac{1}{16} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 2)|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 3)|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Test Your Concepts (Short Answer Type Questions)|29 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

64^(2/3)xx64^(1/3)xx64^((-5)/3)

(64)^((1)/(3))[(64)^((1)/(3))-(64)^((2)/(3))]=?

Simplify (64/125)^(-2/3)

x-64x^(3)

Simplify : [64^(2/3) xx 2^(-2)-:8^0]^(1/2)

Simplify root3((1)/(8)xx(125)/(64))

The value of 64^(-(1)/(3))(64^((1)/(3))-64^((2)/(3))), is 1 (b) (1)/(3)(c)-3(d)-2

Prove that . (i) [8^(-(2)/(3)) xx 2^((1)/(2))xx 25^(-(5)/(4))] div[32^(-(2)/(5)) xx 125 ^(-(5)/(6)) ] = sqrt(2) (ii) ((64)/(125))^(-(2)/(3)) = (1)/(((256)/(625))^((1)/(4)))+ (sqrt(25))/(root3(64)) = (65)/(16) (iii) [7{(81)^((1)/(4)) +(256)^((1)/(4))}^((1)/(4))]^(4) = 16807 .