Home
Class 8
MATHS
If x= (8^((2)/(3)).32^(-(2)/(5))), then ...

If `x= (8^((2)/(3)).32^(-(2)/(5)))`, then `x^(-5)`= ____

A

`(1)/(32)`

B

`-1`

C

1

D

`-5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the expression given for \( x \): \[ x = 8^{\frac{2}{3}} \cdot 32^{-\frac{2}{5}} \] ### Step 1: Rewrite the bases in terms of powers of 2 We know that: - \( 8 = 2^3 \) - \( 32 = 2^5 \) Now, we can rewrite \( x \): \[ x = (2^3)^{\frac{2}{3}} \cdot (2^5)^{-\frac{2}{5}} \] ### Step 2: Apply the power of a power property Using the property \( (a^m)^n = a^{m \cdot n} \), we can simplify both terms: \[ x = 2^{3 \cdot \frac{2}{3}} \cdot 2^{5 \cdot -\frac{2}{5}} \] ### Step 3: Simplify the exponents Calculating the exponents gives us: \[ 3 \cdot \frac{2}{3} = 2 \quad \text{and} \quad 5 \cdot -\frac{2}{5} = -2 \] Thus, we have: \[ x = 2^2 \cdot 2^{-2} \] ### Step 4: Combine the exponents Using the property \( a^m \cdot a^n = a^{m+n} \): \[ x = 2^{2 + (-2)} = 2^0 \] ### Step 5: Simplify \( 2^0 \) We know that any non-zero number raised to the power of 0 is 1: \[ x = 1 \] ### Step 6: Calculate \( x^{-5} \) Now we need to find \( x^{-5} \): \[ x^{-5} = 1^{-5} \] Since \( 1 \) raised to any power is still \( 1 \): \[ x^{-5} = 1 \] ### Final Answer: Thus, the value of \( x^{-5} \) is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 2)|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 3)|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Test Your Concepts (Short Answer Type Questions)|29 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

If (3^(2x-8))/(225)=(5^(3))/(5^(x)), then x=2( b) 3(c)5(d)4

(2x)/(5-3x)=(5+3x)/(8x)

Solve for x ((2)/(5))^(2x-2) = (32)/(3125)

32^(2)-x^(3)=8^(3)+13^(2)

(5)/(8)x^((3)/(2))-:(1)/(2)x^(-(5)/(2))

Simplify: ((sqrt(2))/(5))^(8)-:((sqrt(2))/(5))^(13) (ii) ((5^(-1)x7^(2))/(5^(2)x7^(-7)))^((1)/(2))x((5^(-2)x7^(3))/(5^(3)x7^(-5)))^(-(5)/(2))

If (1-y)(1+2x+4x^(2)+8x^(3)+16x^(4)+32x^(5))=(1-y^(6)) then (y)/(x)=

Divide 14x^(3)y^(2)+8x^(2)y^(3)-32x^(2)y^(5) by -2xy^(2)

Find the value of "x" for which ((5)/(8))^(-2)times((5)/(8))^(-4)=((5)/(8))^(3x+3)

x=(2*5)/((2!)3)+(2*5*7)/((3!)3^(2))+(2*5*7*9)/((4!)3^(3))+..... then x^(2)+8x+8=