Home
Class 8
MATHS
simplify 81^((1)/(4)) xx 9^((3)/(2)) xx ...

simplify `81^((1)/(4)) xx 9^((3)/(2)) xx 27^(-(4)/(3))`= ____

A

1

B

3

C

9

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \( 81^{\frac{1}{4}} \times 9^{\frac{3}{2}} \times 27^{-\frac{4}{3}} \), we can follow these steps: ### Step 1: Rewrite the bases in terms of powers of 3 - \( 81 = 3^4 \) - \( 9 = 3^2 \) - \( 27 = 3^3 \) ### Step 2: Substitute these values into the expression Now we can rewrite the expression: \[ 81^{\frac{1}{4}} = (3^4)^{\frac{1}{4}}, \quad 9^{\frac{3}{2}} = (3^2)^{\frac{3}{2}}, \quad 27^{-\frac{4}{3}} = (3^3)^{-\frac{4}{3}} \] ### Step 3: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we can simplify each term: \[ (3^4)^{\frac{1}{4}} = 3^{4 \cdot \frac{1}{4}} = 3^1 \] \[ (3^2)^{\frac{3}{2}} = 3^{2 \cdot \frac{3}{2}} = 3^3 \] \[ (3^3)^{-\frac{4}{3}} = 3^{3 \cdot -\frac{4}{3}} = 3^{-4} \] ### Step 4: Combine the terms Now we can combine all the terms: \[ 3^1 \times 3^3 \times 3^{-4} \] ### Step 5: Use the property of exponents to add the exponents Using the property \(a^m \times a^n = a^{m+n}\): \[ 3^{1 + 3 - 4} = 3^{0} \] ### Step 6: Simplify \(3^0\) We know that any non-zero number raised to the power of 0 is 1: \[ 3^0 = 1 \] ### Final Answer Thus, the simplified expression is: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 2)|20 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 3)|7 Videos
  • INDICES

    PEARSON IIT JEE FOUNDATION|Exercise Test Your Concepts (Short Answer Type Questions)|29 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos
  • LINEAR EQUATIONS AND INEQUATIONS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL - 3)|9 Videos

Similar Questions

Explore conceptually related problems

81^(1/4)xx9^(3//2)xx27^(- 4/3)=

simplify :((81)/(16))^(-(3)/(4))xx[((25)/(9))^(-(3)/(2))-:((5)/(2))^(-3)

Simplify: (1/3)^(-3) xx (3)^(-1) xx (1/9)

Simplify : [(125)/(27)xx((9)/(25))^3]div((3)/(5))^2

Simplify (2)/(3)xx((15)/(4)-:(9)/(-4))

Simplify: ((9)^(3)xx27xxt^(4))/((3)^(-2)xx(3)^(4)xxt^(2))

((81)/(16))^((-3)/(4))times((25)/(9))^((-3)/(2))