Home
Class 8
MATHS
If a+(1)/(a)=-2, then a^(2)+(1)/(a^(2)) ...

If `a+(1)/(a)=-2`, then `a^(2)+(1)/(a^(2))` = ___________.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + \frac{1}{a^2} \) given that \( a + \frac{1}{a} = -2 \). ### Step-by-step Solution: 1. **Start with the given equation:** \[ a + \frac{1}{a} = -2 \] 2. **Square both sides of the equation:** \[ \left(a + \frac{1}{a}\right)^2 = (-2)^2 \] This simplifies to: \[ a^2 + 2\cdot a\cdot\frac{1}{a} + \frac{1}{a^2} = 4 \] Since \( a\cdot\frac{1}{a} = 1 \), we have: \[ a^2 + 2 + \frac{1}{a^2} = 4 \] 3. **Rearrange the equation to isolate \( a^2 + \frac{1}{a^2} \):** \[ a^2 + \frac{1}{a^2} = 4 - 2 \] This simplifies to: \[ a^2 + \frac{1}{a^2} = 2 \] ### Final Answer: \[ a^2 + \frac{1}{a^2} = 2 \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (FACTORISE THE FOLLOWING) |7 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SIMPLIFY THE FOLLOWING) |30 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise EXAMPLE 4.5|1 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

tan [(1) / (2) sin ^ (- 1) ((2a) / (1 + a ^ (2))) + (1) / (2) cos ^ (- 1) ((1-a ^ (2)) / (1 + a ^ (2)))] =

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+ . . . y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+ . . . . z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+ . . .then

If x=(1)/(1^(2))+(1)/(3^(2))+(1)/(5^(2))+.... , y=(1)/(1^(2))+(3)/(2^(2))+(1)/(3^(2))+(3)/(4^(2))+.... and z=(1)/(1^(2))-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+... then

The value of (1)/(2+(1)/(2-(1)/(2-(1)/(2))))

If (1)/(1^(2))+(1)/(2^(2))+(1)/(3^(2))+...oo=(pi^(2))/(6) then value of 1-(1)/(2^(2))+(1)/(3^(2))-(1)/(4^(2))+...oo=

If harmonic mean of (1)/(2),(1)/(2^(2)),(1)/(2^(3)),...,(1)/(2^(10)) is (lambda)/(2^(10)-1) , then lambda=