Home
Class 8
MATHS
(3a-2b+5c)^(2)...

`(3a-2b+5c)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the square of the expression \((3a - 2b + 5c)^2\), we will use the algebraic identity for the square of a trinomial, which states: \[ (a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2bc + 2ac \] In our case, we will substitute \(a\) with \(3a\), \(b\) with \(-2b\), and \(c\) with \(5c\). ### Step-by-Step Solution: 1. **Identify the terms**: - Let \(x = 3a\) - Let \(y = -2b\) - Let \(z = 5c\) 2. **Apply the identity**: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2xy + 2yz + 2zx \] 3. **Calculate \(x^2\)**: \[ x^2 = (3a)^2 = 9a^2 \] 4. **Calculate \(y^2\)**: \[ y^2 = (-2b)^2 = 4b^2 \] 5. **Calculate \(z^2\)**: \[ z^2 = (5c)^2 = 25c^2 \] 6. **Calculate \(2xy\)**: \[ 2xy = 2 \cdot (3a) \cdot (-2b) = -12ab \] 7. **Calculate \(2yz\)**: \[ 2yz = 2 \cdot (-2b) \cdot (5c) = -20bc \] 8. **Calculate \(2zx\)**: \[ 2zx = 2 \cdot (5c) \cdot (3a) = 30ac \] 9. **Combine all the results**: \[ (3a - 2b + 5c)^2 = 9a^2 + 4b^2 + 25c^2 - 12ab - 20bc + 30ac \] ### Final Answer: \[ (3a - 2b + 5c)^2 = 9a^2 + 4b^2 + 25c^2 - 12ab - 20bc + 30ac \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

(3a-2b)^3+(2b-5c)^3+(5c-3a)^3

If a,b,c are real numbers such that a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then (3a+5b-8c)^(2)+(-8a+3b+5c)^(2)+(5a-8b+3c)^(2) is equal to

If a^(2)+b^(2)+c^(2)=1 where, a,b, cin R , then the maximum value of (4a-3b)^(2) + (5b-4c)^(2)+(3c-5a)^(2) is

The square root of (3a + 2b + 3c)^(2) - (2a + 3b + 2c)^(2) + 5b^(2) is

Expand (i) (a+2b+5c)^2 (ii) (2a+b+c)^2 (iii) (a-2b-3c)^2

Add : 3a ( 2b + 5c), 3c (2a + 2b)

In the given figure,what is the radius of the inscribed circle? (3)/(2) (b) (5)/(2)(c)(7)/(5) (d) none of these

Using the distance formula, show that the points A(3, -2), B(5, 2) and C(8, 8) are collinear.

The roots of the equation 2x^(2)-11x+15=0 are 3,(5)/(2) (b) 5,(3)/(2)(c)-3,backslash-(5)/(2) (d) None of these