Home
Class 8
MATHS
Expand the following by using the identi...

Expand the following by using the identity
`(a-b)^(3)=a^(3)-b^(3)-3ab(a-b)`
`(2x-3y)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \((2x - 3y)^{3}\) using the identity \((a - b)^{3} = a^{3} - b^{3} - 3ab(a - b)\), we can follow these steps: ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: - \(a = 2x\) - \(b = 3y\) ### Step 2: Substitute \(a\) and \(b\) into the identity Now, we substitute \(a\) and \(b\) into the identity: \[ (2x - 3y)^{3} = (2x)^{3} - (3y)^{3} - 3(2x)(3y)(2x - 3y) \] ### Step 3: Calculate \(a^{3}\) and \(b^{3}\) Now we calculate \(a^{3}\) and \(b^{3}\): - \(a^{3} = (2x)^{3} = 8x^{3}\) - \(b^{3} = (3y)^{3} = 27y^{3}\) ### Step 4: Calculate \(3ab\) Next, we calculate \(3ab\): \[ 3ab = 3(2x)(3y) = 18xy \] ### Step 5: Substitute back into the expression Substituting these values back into the equation, we have: \[ (2x - 3y)^{3} = 8x^{3} - 27y^{3} - 18xy(2x - 3y) \] ### Step 6: Expand \( -18xy(2x - 3y) \) Now we need to expand the term \(-18xy(2x - 3y)\): \[ -18xy(2x) + 18xy(3y) = -36x^{2}y + 54y^{2}x \] ### Step 7: Combine all terms Putting it all together, we get: \[ (2x - 3y)^{3} = 8x^{3} - 27y^{3} - 36x^{2}y + 54y^{2}x \] ### Final Answer Thus, the expanded form of \((2x - 3y)^{3}\) is: \[ 8x^{3} - 27y^{3} - 36x^{2}y + 54y^{2}x \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: (a-b)^(3)=a^(3)-b^(3)-3ab(a-b)

(a+b)^(3)-3ab(a+b)

Prove that: (a+b)^(3)=a^(3)+b^(3)+3ab(a+b)

Find the product of the Jfollowing using the identity (a+b)^(2)=a^(2)+2ab+b^2 : (2x^y+3xy^2)^2

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 9x ^(2) - ( 3y + z) ^(2)

.Find the following products using suitable identity. (i) "(2x-3)^(2)," (ii) "(3a-2b)^(2)]]

Expand using suitable identity: ((2)/(3) x -(3)/(2) y) ^(2)

Write each of the following in exponential form: a^(2)b^(3)xa^(3)b( ii) 3a^(2)b^(3)x 2ab^4 4x^(2)y^(3)x3xy^(2)x5x^(2)y

Factorise the expression using the identity : a ^(2) -b ^(2) = (a +b) (a-b). 1331 x ^(2) y - 11 y ^(3)x