Home
Class 8
MATHS
Expand the following by using the identi...

Expand the following by using the identity
`(a-b)^(3)=a^(3)-b^(3)-3ab(a-b)`
`((a)/(11)-1)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To expand the expression \(\left(\frac{a}{11} - 1\right)^{3}\) using the identity \((a-b)^{3} = a^{3} - b^{3} - 3ab(a-b)\), we will follow these steps: ### Step 1: Identify \(a\) and \(b\) In our case, we can identify: - \(a = \frac{a}{11}\) - \(b = 1\) ### Step 2: Substitute into the identity Using the identity, we substitute \(a\) and \(b\): \[ \left(\frac{a}{11} - 1\right)^{3} = \left(\frac{a}{11}\right)^{3} - (1)^{3} - 3\left(\frac{a}{11}\right)(1)\left(\frac{a}{11} - 1\right) \] ### Step 3: Calculate \(a^{3}\) and \(b^{3}\) Now we calculate \(a^{3}\) and \(b^{3}\): - \(a^{3} = \left(\frac{a}{11}\right)^{3} = \frac{a^{3}}{11^{3}} = \frac{a^{3}}{1331}\) - \(b^{3} = 1^{3} = 1\) ### Step 4: Substitute \(a^{3}\) and \(b^{3}\) into the equation Now substituting these values back into the equation: \[ \left(\frac{a}{11} - 1\right)^{3} = \frac{a^{3}}{1331} - 1 - 3\left(\frac{a}{11}\right)(1)\left(\frac{a}{11} - 1\right) \] ### Step 5: Simplify the expression Now we simplify the term \(3\left(\frac{a}{11}\right)(1)\left(\frac{a}{11} - 1\right)\): \[ = 3\left(\frac{a}{11}\right)\left(\frac{a}{11} - 1\right) = 3\left(\frac{a}{11}\right)\left(\frac{a - 11}{11}\right) = \frac{3a(a - 11)}{121} \] ### Step 6: Combine all parts Now substituting this back into the equation: \[ \left(\frac{a}{11} - 1\right)^{3} = \frac{a^{3}}{1331} - 1 - \frac{3a(a - 11)}{121} \] ### Step 7: Final expression Thus, the final expanded expression is: \[ \left(\frac{a}{11} - 1\right)^{3} = \frac{a^{3}}{1331} - 1 - \frac{3a(a - 11)}{121} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

Prove that: (a-b)^(3)=a^(3)-b^(3)-3ab(a-b)

(a+b)^(3)-3ab(a+b)

Prove that: (a+b)^(3)=a^(3)+b^(3)+3ab(a+b)

Expand the using suitable identitie. ((2a)/( 3) + (b)/(3)) ((2a)/(3) - (b)/(3))

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). 3a ^(2) b ^(3) - 27 a ^(4) b

Use appropriate identity, expand (2a)^(3)+b^(3)+(3c)^(3)-18abc .

Factorise the using the identity a ^(2) -b ^(2) = (a +b) (a-b). (x ^(3) y)/( 9) - ( xy ^(3))/(16)

Important Identity -(a^(3)+b^(3)+c^(3)-3abc)=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ac)

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)