Home
Class 8
MATHS
If a^(2)+b^(2)=40 and ab=12, find a+b an...

If `a^(2)+b^(2)=40` and `ab=12`, find `a+b and a-b`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of \( a + b \) and \( a - b \) given the equations \( a^2 + b^2 = 40 \) and \( ab = 12 \). ### Step-by-Step Solution: 1. **Use the identity for \( (a + b)^2 \)**: \[ (a + b)^2 = a^2 + b^2 + 2ab \] We know \( a^2 + b^2 = 40 \) and \( ab = 12 \). 2. **Substitute the known values into the identity**: \[ (a + b)^2 = 40 + 2 \times 12 \] \[ (a + b)^2 = 40 + 24 \] \[ (a + b)^2 = 64 \] 3. **Take the square root to find \( a + b \)**: \[ a + b = \sqrt{64} \quad \text{or} \quad a + b = -\sqrt{64} \] \[ a + b = 8 \quad \text{or} \quad a + b = -8 \] 4. **Use the identity for \( (a - b)^2 \)**: \[ (a - b)^2 = a^2 + b^2 - 2ab \] 5. **Substitute the known values into the identity**: \[ (a - b)^2 = 40 - 2 \times 12 \] \[ (a - b)^2 = 40 - 24 \] \[ (a - b)^2 = 16 \] 6. **Take the square root to find \( a - b \)**: \[ a - b = \sqrt{16} \quad \text{or} \quad a - b = -\sqrt{16} \] \[ a - b = 4 \quad \text{or} \quad a - b = -4 \] ### Final Results: - \( a + b = 8 \) or \( a + b = -8 \) - \( a - b = 4 \) or \( a - b = -4 \)
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

If a^(2)+b^(2)=25 and ab=12 find a^(2)-b^(2)

If a ^(2) + b ^(2) = 74 and ab = 35, then find a + b.

If a^(2)+b^(2)=234 and ab=108 , find the value of (a+b)/(a-b)

If a^(2)+b^(2)=117 and ab=54, then find the value of (a+b)/(a-b)

If 9a^(2)-6ab+b^(2)=0 then find a:b

If a-b=4 and a+b=6 then find a^(2)+b^(2) and ab

If a-b = 5 and ab = 14, then find a^2 + b^2 ?

Find the product ab(a^(2) + b^(2)) and evaluate it for a = 2 and b = 3.

If a+b=25 and a^(2)+b^(2)=225 then find ab

If a^2 + b^2 = 53 and ab = 14, then find the value of a +b