Home
Class 8
MATHS
Simplify: (1-ab)^(2)-(1+ab)^(2)...

Simplify:
`(1-ab)^(2)-(1+ab)^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((1-ab)^{2} - (1+ab)^{2}\), we can follow these steps: ### Step 1: Identify the expression We start with the expression: \[ (1-ab)^{2} - (1+ab)^{2} \] ### Step 2: Apply the difference of squares formula We can recognize that this expression is in the form of a difference of squares, which can be factored as: \[ a^{2} - b^{2} = (a-b)(a+b) \] Here, let \(a = (1-ab)\) and \(b = (1+ab)\). Thus, we can rewrite the expression as: \[ ((1-ab) - (1+ab))((1-ab) + (1+ab)) \] ### Step 3: Simplify the first factor Now, simplify the first factor: \[ (1-ab) - (1+ab) = 1 - ab - 1 - ab = -2ab \] ### Step 4: Simplify the second factor Next, simplify the second factor: \[ (1-ab) + (1+ab) = 1 - ab + 1 + ab = 2 \] ### Step 5: Combine the factors Now, we can combine the simplified factors: \[ (-2ab)(2) = -4ab \] ### Final Answer Thus, the simplified expression is: \[ \boxed{-4ab} \] ---
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

Simplify (ab- c) ^(2) + 2 abc

Simplify (a - b) (a ^(2) + b ^(2) + ab) - (a +b) (a ^(2) +b ^(2) - ab)

Simplify: 4ab(a-b)-6a^(2)(b-b^(2))-3b^(2)(2a^(2)-a)+2ab(b-a)

Simplify: a^(2)b(a-b^(2))+ab^(2)(4ab-2a^(2))-a^(3)b(1-2b)

Simplify that: (4ab^(2)(-5ab^(3)))/(10a^(2)b^(2))

Simplify (a^(2) - 8ab - 5) + (3ab - 4a^(2) + 8)

Simplify (((1)/(4ab^(2)c))^(2))/(((3)/(2a^(2)bc^(2)))^(4))

Simplify: -(1)/(2)a^(2)b^(2)c+(1)/(3)ab^(2)c-(1)/(4)abc^(2)-(1)/(5)cb^(2)a^(2)+(1)/(6)cb^(2)a-(1)/(7)c^(2)ab+(1)/(8)ca^(2)b

Simplify: ab(a^(2)-b^(2))+b^(3)(a-2b)