Home
Class 8
MATHS
Simplify: (4x+7)^(3)+(4x-7)^(3)...

Simplify:
`(4x+7)^(3)+(4x-7)^(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To simplify the expression \((4x+7)^{3} + (4x-7)^{3}\), we can use the formula for the sum of cubes. The sum of cubes can be expressed as: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] In our case, we can let: - \(a = 4x + 7\) - \(b = 4x - 7\) Now, we can find \(a + b\) and \(a^2 - ab + b^2\). ### Step 1: Calculate \(a + b\) \[ a + b = (4x + 7) + (4x - 7) = 4x + 7 + 4x - 7 = 8x \] ### Step 2: Calculate \(a^2\) \[ a^2 = (4x + 7)^2 = (4x)^2 + 2 \cdot (4x) \cdot 7 + 7^2 = 16x^2 + 56x + 49 \] ### Step 3: Calculate \(b^2\) \[ b^2 = (4x - 7)^2 = (4x)^2 - 2 \cdot (4x) \cdot 7 + 7^2 = 16x^2 - 56x + 49 \] ### Step 4: Calculate \(ab\) \[ ab = (4x + 7)(4x - 7) = (4x)^2 - 7^2 = 16x^2 - 49 \] ### Step 5: Calculate \(a^2 - ab + b^2\) Now we can substitute \(a^2\), \(b^2\), and \(ab\) into the expression \(a^2 - ab + b^2\): \[ a^2 - ab + b^2 = (16x^2 + 56x + 49) - (16x^2 - 49) + (16x^2 - 56x + 49) \] Simplifying this step-by-step: 1. Combine like terms: \[ = 16x^2 + 56x + 49 - 16x^2 + 49 + 16x^2 - 56x + 49 \] 2. The \(16x^2\) terms cancel out: \[ = (56x - 56x) + (49 + 49 + 49) = 0 + 147 = 147 \] ### Step 6: Substitute back into the sum of cubes formula Now, we can substitute \(a + b\) and \(a^2 - ab + b^2\) back into the sum of cubes formula: \[ (4x + 7)^3 + (4x - 7)^3 = (8x)(147) = 1176x \] ### Final Answer Thus, the simplified expression is: \[ \boxed{1176x} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (ESSAY TYPE QUESTIONS)|6 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 1)|33 Videos
  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise TEST YOUR CONCEPTS (SHORT ANSWER TYPE QUESTIONS)|3 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

Simplify: [(7/11)^(3)]^(4)=

Simplify: (7)/(9)+(3)/(-4)

Simplify: (3x^(3)-4x^(2)+5)-(2x^(3)-2x^(2)+3)

Simplify: 3/7+4/6

Simplify: (-4(5)/(6))+(-7(3)/(4))

Simplify: x^7 y^3 z^(-4) xx x^(-4) y^6 z^(-2) xx x^2 z^3

Simplify : (5/8)^(-7)x\ (8/5)^(-5) (ii) ((-2)/3)^(-2)x\ (4/5)^(-3) (3/4)^(-4)-:(3/2)^(-3) (iv) (3/7)^(-2)x\ (7/6)^(-3)

.Simplify: (3)/(4)" of "7(3)/(7)-5(3)/(5)-:3(4)/(15)

simplify: (3x+7)/(2x^(2)+3x-2)

Simplify :(i)-(7)/(9)+(3)/(4)