Home
Class 8
MATHS
If ((a)/(b))+((b)/(a))=2, then find ((a)...

If `((a)/(b))+((b)/(a))=2`, then find `((a)/(b))^(100)-((b)/(a))^(10)`

A

`(2^(20)-1)/(2^(10))`

B

2

C

0

D

`(2^(20)+1)/(2^(10))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(\frac{a}{b} + \frac{b}{a} = 2\) and find the value of \(\left(\frac{a}{b}\right)^{100} - \left(\frac{b}{a}\right)^{10}\), we can follow these steps: ### Step 1: Let \(\frac{a}{b} = T\) We start by substituting \(\frac{a}{b}\) with \(T\). Consequently, \(\frac{b}{a} = \frac{1}{T}\). ### Step 2: Rewrite the equation Now, we can rewrite the equation: \[ T + \frac{1}{T} = 2 \] ### Step 3: Multiply through by \(T\) To eliminate the fraction, we multiply the entire equation by \(T\): \[ T^2 + 1 = 2T \] ### Step 4: Rearrange the equation Rearranging gives us: \[ T^2 - 2T + 1 = 0 \] ### Step 5: Factor the quadratic This can be factored as: \[ (T - 1)^2 = 0 \] ### Step 6: Solve for \(T\) Setting the factor equal to zero gives: \[ T - 1 = 0 \implies T = 1 \] ### Step 7: Substitute back to find \(\frac{a}{b}\) and \(\frac{b}{a}\) Since \(T = \frac{a}{b}\), we have: \[ \frac{a}{b} = 1 \quad \text{and} \quad \frac{b}{a} = 1 \] ### Step 8: Calculate the required expression Now we need to find: \[ \left(\frac{a}{b}\right)^{100} - \left(\frac{b}{a}\right)^{10} \] Substituting the values we found: \[ 1^{100} - 1^{10} = 1 - 1 = 0 \] ### Final Answer Thus, the final answer is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • POLYNOMIALS, LCM AND HCF OF POLYNOMIALS

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL 2)|21 Videos
  • PERCENTAGES

    PEARSON IIT JEE FOUNDATION|Exercise Concept Application (LEVEL 3)|7 Videos
  • PROFIT AND LOSS , DISCOUNT AND PARTNERSHIP

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (LEVEL-3)|9 Videos

Similar Questions

Explore conceptually related problems

if ((a)/(b))+((b)/(a))=2 then find ((a)/(b))^(10)-((b)/(a))^(10)

If a/b =5/2 , then find (3a-b)/(b)

if a=2,b=3 find (a)(a^(b)+b^(a))^(-1)

If (2a+b)/(a+4b)=3, then find the value of (a+b)/(a+2b)*(2)/(7)(b)(5)/(9)(c)(10)/(7)(d)(10)/(9)

If (2a+b)/(a+4b)=3, then find the value of (a+b)/(a+2b)

If (2a+b)/(a +4b)=3 , then find the value of (a+b)/(a+2b)

If (2a+ b)/(a+4b) = 3 , then find the value of (a+b)/(a+2b)

If a+b=7 and ab=10, then find a−b.

If a+b=10, ab=24 then find a^2+b^2

If (a^2 - b^2) + (a + b)=25 , find a - b