Home
Class 8
MATHS
If t(n)=ar^(n -1), then find the value o...

If `t_(n)=ar^(n -1)`, then find the value of n, given that `a=2,r=3 and t_(n)=486`.

A

5

B

6

C

4

D

8

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • Formulae

    PEARSON IIT JEE FOUNDATION|Exercise Very Short Type Question|20 Videos
  • Formulae

    PEARSON IIT JEE FOUNDATION|Exercise Short Answer Type Question|25 Videos
  • GEOMETRY

    PEARSON IIT JEE FOUNDATION|Exercise CONCEPT APPLICATION (Level 1)|60 Videos

Similar Questions

Explore conceptually related problems

If t_(n)=an^(-1) , then find the value of n, given that a=2,r=3 and t_(n)=486 .

The nth term of a geometric progression is given by t_(n)=ar^(n-1) find the value of a, if t_(n)=32,r=4 and n=5 .

The Fibonacci sequence is defence by t_(1)=t_(2)=1,t_(n)=t_(n-1)+t_(n-2)(n>2). If t_(n+1)=kt_(n) then find the values of k for n=1,2,3 and 4.

51+53+55++t_(n)=5151 Then find the value of t_(n)

51+53+55++t_(n)=5151. Then find the value of t_(n)

If t_(n)=(n+2)/((n+3)!) then find the value of sum_(n=5)^(20)t_(n)

(a) In the formula t_(n)=[a+(n-1)d] , make 'n' as the subject. (b) find the value of n when t_(n)=92,a=1 and d=13 .

Given t_(n)=4n-12 find t_(10)

t_(n)=n^(3)-3, find series