Home
Class 12
MATHS
lim(x to 0) (2^(x)-1)/(x) +lim(x to 0) (...

`lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x))` equals :

A

1

B

2

C

0

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit expression \[ \lim_{x \to 0} \frac{2^x - 1}{x} + \lim_{x \to 0} \frac{3^x - 1}{x} - \lim_{x \to 0} \frac{6^x - 1}{x}, \] we can use the property of limits for exponential functions. The property states that: \[ \lim_{x \to 0} \frac{a^x - 1}{x} = \log(a), \] where \(\log\) is the natural logarithm (base \(e\)). ### Step 1: Apply the limit property to each term 1. **First Limit:** \[ \lim_{x \to 0} \frac{2^x - 1}{x} = \log(2) \] 2. **Second Limit:** \[ \lim_{x \to 0} \frac{3^x - 1}{x} = \log(3) \] 3. **Third Limit:** \[ \lim_{x \to 0} \frac{6^x - 1}{x} = \log(6) \] ### Step 2: Substitute the limits back into the expression Now we can substitute these results back into the original expression: \[ \log(2) + \log(3) - \log(6) \] ### Step 3: Use logarithmic properties Using the property of logarithms that states \(\log(a) + \log(b) = \log(ab)\), we can combine the first two logarithms: \[ \log(2) + \log(3) = \log(2 \cdot 3) = \log(6) \] ### Step 4: Simplify the expression Now, substituting this back into our expression gives: \[ \log(6) - \log(6) = 0 \] ### Final Result Thus, the final answer is: \[ \boxed{0} \]

To solve the limit expression \[ \lim_{x \to 0} \frac{2^x - 1}{x} + \lim_{x \to 0} \frac{3^x - 1}{x} - \lim_{x \to 0} \frac{6^x - 1}{x}, \] we can use the property of limits for exponential functions. The property states that: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) ((3^(x)-1)/(x)) is equal to

lim_(x rarr0)(2^(2x)-1)/(x)

lim_(x to 0)(a^(x)-1)/x is equal to :

lim_(x to 0) (cos (sin x) - 1)/(x^2) equals :

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

lim_(x to 0)(x)/(tan^(-1)2x) is equal to

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

lim_(x rarr0)((x+1)^(n)-1)/(x)

lim_(x rarr0)((x+1)^(5)-1)/(x)

lim_(x rarr0)((1+x)^(4)-1)/(x)