Home
Class 12
MATHS
lim(x->0) (2^x-1)/(sqrt(1+x)-1)...

`lim_(x->0) (2^x-1)/(sqrt(1+x)-1)`

A

2

B

`log_(e )2`

C

`(log_(e )2)/(2)`

D

`2log_(e )2`

Text Solution

Verified by Experts

The correct Answer is:
D

`lim_(x to 0) (2^(x) -1)/(sqrt(1+x)-1) = lim_( x to 0) (2^(x)-1)/(x) xx (x)/(sqrt(1+x)-1) xx (sqrt(1+x) +1)/(sqrt(1+x) -1) =log 2 lim_(x to 0) (sqrt(1+x) +1) =2log 2`
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (2x)/(sqrt(1+x)-1)

lim_(x rarr0) (2x)/(sqrt(1+x)-1)

lim_(x->0)(e^(x)-1)/(sqrt(4+x)-2) =

lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)

lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)=

Evaluate: lim_(x rarr0)(2^(x)-1)/(sqrt(1+x)-1)

lim_(x to 0) (2^(x) - 1)/(sqrt(1 + x) - 1) =

Show that lim_(x rarr0)(e^(x)-1)/(sqrt(1+x)-1)=2

lim_(xrarr0)(pi^(x)-1)/(sqrt(1+x)-1)

lim_(x rarr0)(x)/(sqrt(1+x))-1