Home
Class 12
MATHS
Evaluate underset(xto1)lim"sec"(pi)/(2^(...

Evaluate `underset(xto1)lim"sec"(pi)/(2^(x)).log_(e)x`.

A

`(pi)/(2)`

B

`-(2)/(pi ln 2)`

C

`(2)/(pi ln 2)`

D

`(pi)/(ln 2)`

Text Solution

Verified by Experts

The correct Answer is:
C

`lim_( x to 1) "sec"(pi)/(2^(x)) *ln x= lim_(x to 1) (ln)/("cos"(pi)/(2^(x)))=lim_(x to 0) ((1)/(x))/((-)pi "sin"(pi)/(2^(x)) *(1)/(2^(x)) ln 2(-1)) = (1)/(pi"sin"(pi)/(2) xx (1)/(2) xx ln 2)=(2)/(pi ln 2)`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto1) "sec" (pi)/(2^(x)).log_(e)x .

Evaluate: lim_(n rarr1)sec(pi)/(2^(x))log x

Evaluate underset(x to pi//6)lim (2sin x-1)/(x-pi/6)

Evaluate lim_(xto1) ("cos"(pi)/(2)x)/(1-sqrt(x))

Evaluate lim_(xto1) (1-x)"tan"(pix)/(2).

Evaluate underset( x rarr oo) ( "lim") ( pi - 2 tan^(-1) x ) ln x

Value of the underset(x to -2)lim (tan pi x)/(x+2)+underset(x to oo)lim (1+1/x^(2))^(x) is

Evaluate underset( x rarr oo) ( "Lim") x - x^(2) ln ( 1+ ( 1)/( x))

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).