Home
Class 12
MATHS
lim(x to 0) ((4^(x)+9^(x))/(2))^(1//x) e...

`lim_(x to 0) ((4^(x)+9^(x))/(2))^(1//x)` equals:

A

2

B

6

C

16

D

112

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} \), we will follow these steps: ### Step 1: Identify the Indeterminate Form First, we substitute \( x = 0 \): \[ \frac{4^0 + 9^0}{2} = \frac{1 + 1}{2} = 1 \] Thus, we have: \[ \left(1\right)^{\frac{1}{0}} = 1^{\infty} \] This is an indeterminate form, so we need to apply logarithms to resolve it. ### Step 2: Take the Natural Logarithm Let \( L = \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} \). Taking the natural logarithm on both sides gives: \[ \ln L = \lim_{x \to 0} \frac{1}{x} \ln\left( \frac{4^x + 9^x}{2} \right) \] ### Step 3: Simplify the Logarithm We can rewrite the logarithm: \[ \ln L = \lim_{x \to 0} \frac{1}{x} \left( \ln(4^x + 9^x) - \ln(2) \right) \] This can be further simplified to: \[ \ln L = \lim_{x \to 0} \frac{\ln(4^x + 9^x)}{x} - \frac{\ln(2)}{x} \] As \( x \to 0 \), \( \frac{\ln(2)}{x} \) approaches infinity, so we need to focus on the first term. ### Step 4: Apply L'Hôpital's Rule The limit \( \lim_{x \to 0} \frac{\ln(4^x + 9^x)}{x} \) is of the form \( \frac{0}{0} \), so we can apply L'Hôpital's Rule: \[ \ln(4^x + 9^x) \text{ differentiates to } \frac{4^x \ln(4) + 9^x \ln(9)}{4^x + 9^x} \] Thus, we have: \[ \ln L = \lim_{x \to 0} \frac{4^x \ln(4) + 9^x \ln(9)}{4^x + 9^x} \] ### Step 5: Evaluate the Limit As \( x \to 0 \): \[ 4^x \to 1 \quad \text{and} \quad 9^x \to 1 \] So: \[ \ln L = \frac{1 \cdot \ln(4) + 1 \cdot \ln(9)}{1 + 1} = \frac{\ln(4) + \ln(9)}{2} \] Using properties of logarithms, we can combine: \[ \ln L = \frac{\ln(4 \cdot 9)}{2} = \frac{\ln(36)}{2} \] ### Step 6: Solve for \( L \) Exponentiating both sides gives: \[ L = e^{\frac{\ln(36)}{2}} = 36^{\frac{1}{2}} = 6 \] ### Conclusion Thus, the limit is: \[ \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} = 6 \]

To solve the limit problem \( \lim_{x \to 0} \left( \frac{4^x + 9^x}{2} \right)^{\frac{1}{x}} \), we will follow these steps: ### Step 1: Identify the Indeterminate Form First, we substitute \( x = 0 \): \[ \frac{4^0 + 9^0}{2} = \frac{1 + 1}{2} = 1 \] Thus, we have: ...
Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x to 0) ((16^x+9^x)/2)^(1//x) is equal to

lim_(x rarr0)((4^(x)+9^(x))/(2))^((1)/(x))

lim_(xto0) ((e^x+e^-x-2)/(x^2))^(1//x^2) is equal to

lim_(x to 0) ((4^(x)-9^(x))/((4^(x)+9^(x)))) is equal to

The value of lim_(x to 0) ((1)/(x^(2)) - cot x) equals

lim_(x to 0) (log (1 + 2x))/(x) + lim_(x to 0) (x^(4) - 2^(4))/(x - 2) equals

lim_(x rarr0)(3^(x)-2^(x))/(4^(x)-3^(x)) is equal to

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :

lim_(x to 0) (sin^(2) x//4)/(x) is equal to