Home
Class 12
MATHS
Solve tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=...

Solve `tan^-1(1/(1+2x))+tan^-1(1/(1+4x))=tan^-1(2/x^2)`

A

(A) 0

B

(B) 3

C

(C) `-2/3`

D

(D) `1/4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=tan^(-1)(1/(1+x+x^2))+tan^(-1)(1/(x^2+3x+3))+tan^(-1)(1/(x^2+5x+7))+ ....+ upto n terms, then find the value of y^(prime)(0)dot

If x^2 + y^2 + z^2 = r^2 and x, y, z > 0 , then tan^-1((xy)/(zr))+tan^-1((yz)/(xr))+tan^-1((zx)/(yr)) is equal to

The acute angle between the curve y^2=x and x^2=y at (1,1) is a) tan^-1(4/5) b) tan^-1(3/4) c) tan^-1(1) d) tan^-1(4/3)

tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)

Find the value of tan^-1(1/2tan2A)+tan^-1(cotA)+tan^-1(cot^3A)

Prove that - tan^(-1).(1)/(2)+tan^(-1).(2)/(11)=

Solve y=tan^(-1)((sqrt(1+x^2)-1)/x)

tan^(-1) (cot x) +cot^(-1)(tan x) =

tan^(-1)""(x)/(y)-tan^(-1)""(x-y)/(x+y)=