Home
Class 12
MATHS
Solve for x : cot^(-1)x + sin^(-1)(1/sqr...

Solve for `x` : `cot^(-1)x + sin^(-1)(1/sqrt(5)) = pi/4`

A

(A) 3

B

(B) `1/sqrt5`

C

(C) 0

D

(D) 4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x = sin^(-1)(3/sqrt(10)) , then: x=

sin(cot^(-1)x) =

sin^(-1)""1/sqrt5+cot^(-1)3=

cot^(-1)((sqrt(1+x^(2))-1)/(x)) =

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^(2)+x+1)=(pi)/(2) is

If tan(cos^(-1) x) = sin (cot^(-1)( (1)/(2))) , then find the value of x

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

The simplest form of cot^-1 (1/(sqrt(x^2-1))) , |x|>1 is

Differentiate the following w.r.t x: cot^(-1) ( frac {1- sqrt x }{1 + sqrt x } )

Solve the following: If x = sin^(-1) (e^t), y= sqrt (1- e^(2t)) , show that sin x + dy/dx =0