Home
Class 12
MATHS
int(e^(tan^-1x))/(1+x^2)dx =...

`int(e^(tan^-1x))/(1+x^2)dx` =

A

(A) `log(1+ x^2) + c`

B

(B) `log e^(tan^-1x)+c`

C

(C) `e^(tan^-1x)+c`

D

(D) `tan^-1e^(tan^-1x)+c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int(e^(tan^(-1)x))/(1+x^2)dx

int (((x^2+2)a^((x+tan^-1 x)))/(x^2+1)) dx =

Evaluate: int(x^2tan^(-1)x^3)/(1+x^6)dx

inte^(tan^(-1)x)(1+(x)/(1+x^(2)))dx is equal to

int(((x^2+2)a^((x+tan^(- 1)x)))/(x^2+1))dx=

IF int_0^1tan^-1xdx=p ,then int_0^1tan^-1((1-x)/(1+x))dx=

int (e^x(x-1))/x^2 dx =

int_(0)^(1)(tan^(-1)x)/((1+x^(2)))dx