Home
Class 12
MATHS
int(f'(x))/([f(x)]^2)dx =...

`int(f'(x))/([f(x)]^2)dx` =

A

(A) `-[f(x)]^-1+c`

B

(B) `log[f(x)] + c`

C

(C) `e^(f(x))+c`

D

(D) `-log[f(x)] + c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral overset(2a)underset(0)int (f(x))/(f(x)+f(2a-x))dx is equal to

If int(f(x))/(log(sinx))dx=log[log sinx]+c , then f(x) is equal to

If int(1)/(f(x))dx=log[f(x)]^(2)+c , then f(x)=

int [f(x)+xf'(x)]dx =

If int_(-1) ^(4) f(x) dx=4and int_(2)^(4) (3-f(x))dx=7, then int_(-1) ^(2) f(x) dx=

If f(x)+f(3-x)=0 , then int_(0)^(3)1/(1+2^(f(x)))dx=

If f(x)=(1)/(1-x) , then int(f_(o) f_(o)f)(x)dx=

int_(0)^(a)f(x)dx=

int{log(logx)+(1)/((logx)^(2))}dx=x {f (x)-g(x)}+C , then