Home
Class 12
MATHS
int(dx)/(1+e^x) =...

`int(dx)/(1+e^x)` =

A

(A) `log|1+e^x|+ c`

B

(B) `-log|1+e^-x|+ c`

C

(C) `-log|1-e^-x|+ c`

D

(D) `log|e^-x+e^(-2x)|+ c`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

int(dx)/(e^(x)+1-2e^(-x))=

int(e^x)/((1+e^x)(2+e^x))dx

int (dx)/(e^x + e^-x)

int(dx)/(e^(x)+e^(-x)+2) is equal to

int(dx)/(e^(2x)-3e^(x))=

int(dx)/(sqrt(1-e^(2x))) is equal to

int(1+x)/(x+e^(-x))dx is equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to