Home
Class 12
MATHS
If "sin"^(-1)x + "sin"^(-1)y +"sin"^(-1)...

If `"sin"^(-1)x + "sin"^(-1)y +"sin"^(-1)z = pi "prove that" x^4+y^4+z^4 +4x^2y^2z^2=2(x^2y^2+y^2z^2+z^2x^2)`

Text Solution

Verified by Experts

The correct Answer is:
`2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))`
Promotional Banner

Topper's Solved these Questions

  • CHSE ODISHA EXAMINATION PAPER 2020

    ARIHANT PUBLICATION|Exercise GROUP B (ANSWER ANY THREE QUESTIONS)|25 Videos
  • CHSE ODISHA EXAMINATION PAPER 2019

    ARIHANT PUBLICATION|Exercise Group C (30 Marks) |13 Videos
  • CONTINUITY AND DIFFERENTIABILITY

    ARIHANT PUBLICATION|Exercise CHAPTER PRACTICE (4 MARK)|47 Videos

Similar Questions

Explore conceptually related problems

cos^(-1)x+cos^(-1)y+cos^(-1)z=pi ,then prove that, x^2+y^2+z^2+xyz=1

If sin^(-1) x +sin^(-1) y + sin^(-1) z =pi , "show that" x sqrt(1-x^2)+y sqrt(1-y^2) +zsqrt(1-z^2)=2 xyz

If "sin"^(-1)x+"sin"^(-1)y+"sin"^(-1)z=pi , show that xsqrt(1-x^(2))+ysqrt(1-y^(2))+zsqrt(1-z^(2))=2xyz

If cos^-1x+cos^-1y+cos^-1z=pi , prove that x^2+y^2+z^2+2xyz=1 .

Prove that |[x, y, z],[x^2, y^2, z^2], [x^3, y^3, z^3]|=xyz(x-y)(y-z)(z-x)

If x+y+z=xyz , prove that x/(1-x^2)+ y/(1-y^2)+z/(1-z^2) =(4xyz)/((1-x^2)(1-y^2)(1-z^2))

Prove the sin^2(sin^(-1) x+sin^(-1) y+sin^(-1)z) =cos^2 (cos^(-1)x +cos^(-1) y+cos^(-1) z)

solve 3x - 2y + z = 1 2x + y- 5z = 2 x- y - 2z = 3.

Using properties of determinants, prove that |{:(y^2z^2,yz,y+z),(z^2x^2,zx,z+x),(x^2y^2,xy,x+y):}|=0