If vector `bar(AB) = 2 hat(i) - hat(j) + hat(k) and bar(OB) = 3 hat(i) - 4hat(j) + 4 hat(k)`, find the position vector `bar(OA)`
Text Solution
Verified by Experts
The correct Answer is:
`hati-3hatj+3hatk`
Topper's Solved these Questions
II PUC MARCH-2016
OSWAAL PUBLICATION|Exercise PART - B |14 Videos
II PUC MARCH-2016
OSWAAL PUBLICATION|Exercise PART - C |14 Videos
II PUC MARCH - 2017
OSWAAL PUBLICATION|Exercise PART - E|3 Videos
II PUC TOPPER ANSWERS MARCH-2016
OSWAAL PUBLICATION|Exercise PART - E|2 Videos
Similar Questions
Explore conceptually related problems
If vec(AB) = 3hat(i) + 2hat(j) + 6hat(k), vec(OA) = hat(i) - hat(j) - 3hat(k) , find the value of vec(OB) .
Show that the vectors bar(a) = 2 hat(i) - 3 hat(j) + 4 hat(k) and bar(b) = -4 hat(i) + 6 hat(j) - 8k are collinear.
If the vectors 2hat(i) + 3hat(j) - 6hat(k) and 4hat(i) - m hat(j) - 12 hat(k) are parallel find m.
Write the value of lambda so that the vectors vec(a) = 2hat(i) + lambda hat(j) + hat(k) and vec(b) = hat(i) - 2hat(j) + 3hat(k) are perpendicular to each other ?
Find the magnitude of the vector (2hat(i) - 3hat(j) - 6hat(k)) + (-hat(i) + hat(j) + 4hat(k)) .
If the position vectors of vec(A) and vec(B) are 3hat(i) - 2hat(j) + hat(k) and 2hat(i) + 4hat(j) - 3hat(k) the length of vec(AB) is
Find the angle between the vectors vec(a) = hat(i) + hat(j) + hat(k) and vec(b) = hat(i) - hat(j) + hat(k) .
The scalar product of the vector vec(a) = hat(i) + hat(j) + hat(k) with a unit vector along the sum of vectors vec(b) = 2hat(i) + 4hat(j) - 5hat(k) and vec(c ) = lambda hat(i) + 2hat(j) + 3hat(k) is equal to one. Find the value of lambda and hence find the unit vector along vec(b) + vec(c ) .
If vec(a) = hat(i) + hat(j) + hat(k), vec(b) = 4hat(i) - 2hat(j) + 3hat(k) and vec(c ) = hat(i) - 2hat(j) + hat(k) , find a vector of magnitude 6 units which is parallel to the vector 2vec(a) - vec(b) + 3vec(c ) .