Prove that `|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=(a-b)(b-c)(c-a)(a+b+c)`
Text Solution
Verified by Experts
The correct Answer is:
`I=0`
Topper's Solved these Questions
II PUC MARCH-2016
OSWAAL PUBLICATION|Exercise PART - D|10 Videos
II PUC MARCH - 2017
OSWAAL PUBLICATION|Exercise PART - E|3 Videos
II PUC TOPPER ANSWERS MARCH-2016
OSWAAL PUBLICATION|Exercise PART - E|2 Videos
Similar Questions
Explore conceptually related problems
Prove that |(1,1,1),(bc,ca,ab),(b+c, c+a, a+b)| = (a-b)(b-c)(c-a)
Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)
Prove that |{:(,1,a,a^(2)),(,1,b,b^(2)),(,1,c,c^(2)):}|=(a-b)(b-c)(c-a)
Prove that {:[(1,ab,a+b),(1,bc,b+c),(1,ca,c+a):}]=(a-b)(b-c)(c-a)
Using the Properties of determinants, prove the following: {:|(1,1,1),(a,b,c),(bc,ca,ab)|=(a-b)(b-c)(c-a)
a. Minimize z =-3x+4y subject to constraints. x+2yle8 3x+2yle12 xge0, yge0 by graphical method. b. Prove that {:abs((1,a,a^2),(1,b,b^2),(1,c ,c^2)):} = (a - b)(b-c)(c-a)
Prove that |(b+c,a,a),(b,c+a,b),(c,c,a+b)|= 4ac
Prove that {:|( b+c,a,a), ( b,c+a,b),( c,c,b+a) |:} = 4abc
If A=|{:(a_(1),b_(1),c_(1)),(a_(2),b_(2),c_(2)),(a_(3),b_(3),c_(3)):}|andB=|{:(c_(1),c_(2),c_(3)),(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)):}| then