Home
Class 11
MATHS
If A+B+C=pi, then sin(A+B)=...

If `A+B+C=pi`, then sin(A+B)=

A

sin A

B

sin B

C

sin A + sin C

D

sin C

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B + cos^(2) C is equal to

If A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

If A+B+C=pi then (tanA+tanB+tanC)/(tanA tan B tanC) .......... A) 0 B) 2 C) 1 D) -1

if A+B+C=pi then cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=

If A+B+C = 180^@ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

If A+B+C=3pi/2 then cos2A+cos2B+cos2C=1-4sinAsinBsinC

If sin (A + B + C) = 1, tan (A - B) = 1//sqrt(3) and "sec" (A + C) = 2 , then

In a DeltaABC , if the sides are a = 3, b = 5 and c = 4, then sin.(B)/(2)+cos.(B)/(2) is equal to