Home
Class 11
MATHS
If sin A=1/sqrt10 and sin B=1/sqrt5, whe...

If `sin A=1/sqrt10` and `sin B=1/sqrt5`, where A and B are positive acute angles, then A+B=

A

`pi`

B

`pi/2`

C

`pi/3`

D

`pi/4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If cos theta = 3/5 and cos phi =4/5, where theta and phi are positive acute angles, then cos ""(theta - phi)/(2)= ............... A) (7)/(sqrt2) B) (7)/(5sqrt2) C) (7)/(sqrt5) D) (7)/(2sqrt5)

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are

If sin(A+B)=1andcos(A-B)=(sqrt(3))/(2) , then the smallest positive values of A and B are

If 1/sqrt(2) le x le 1 and sin^(-1)(2xsqrt(1-x^(2))) = A + B sin^(-1)x , then (A,B)=

If cos theta = (3)/( 5) , where ' theta ' is an acute angle. Find the value of sin theta .

If in a triangle ABC, b=sqrt3 , c=1 and B-C=90^0 , then angle A is

If sin theta = (5)/(13), where theta is an acute angle , find the values of other trigonometric ratios using identities .