Home
Class 11
MATHS
If cos(theta-alpha)=a,sin(theta-beta)=b ...

If `cos(theta-alpha)=a`,`sin(theta-beta)=b` then `cos^2(alpha-beta)+2 ab sin(alpha-beta)` is equal to

A

`4a^2b^2`

B

`a^2-b^2`

C

`a^2+b^2`

D

`-a^2b^2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin(theta+alpha)=a and sin(theta+beta)=b then cos2(alpha-beta)-4abcos(alpha-beta) is equal to

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

If cos3theta=alphacostheta+betacos^3theta , then (alpha,beta) =

If cos(alpha+beta)=3/5 , sin(alpha-beta)=5/13 and 0

sin(beta+gamma-alpha)+sin(gamma+alpha-beta)+sin(alpha+beta-gamma)-sin(alpha+beta+gamma)=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

Given that cos ((alpha -beta)/(2)) = 2 cos ((alpha+ beta)/(2)), then tan ""(alpha)/(2) tan ""(beta)/(2) is equal to ...........A) 1/2 B) 1/3 C) 1/4 D) 1/8

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=