Home
Class 11
MATHS
If x,y,z are any three real numbers, the...

If x,y,z are any three real numbers, then tan(x-y)+tan(y-z)+tan(z-x) is equal to

A

1) 1

B

2) 0

C

3) tan(x-y)tan(y-z)tan(z-x)

D

4) tan(y-x)tan(z-y)tan(x-z)

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If x^2 + y^2 + z^2 = r^2 and x, y, z > 0 , then tan^-1((xy)/(zr))+tan^-1((yz)/(xr))+tan^-1((zx)/(yr)) is equal to

If tan^-1(x^2+y^2)=alpha,then(dy)/(dx) is equal to

If tan^(-1)x-tan^(-1)y=tan^(-1)A, then A=

If y=tan^-1((1+x)/(1-x)) , then dy/dx is equal to

If y=e^(tan x) , then cos^2 x(d^2y)/(dx^2) is equal to

If y = tan^(-1) (sec x - tan x ) , "then" (dy)/(dx) is equal to

If (sin (x+y))/( sin(x-y))=(a+b)/(a-b) , then (tan x)/( tan y) is equal to .............. A) b/a B) a/b C) ab D) a-b

If x, y, z are positive then prove that tan^-1(frac{x-y}{1+xy})+tan^-1(frac{y-z}{1+yz})+tan^-1(frac{z-x}{1+zx}) = 0

If alpha, beta,gama are the cube roots of p, then for any x,y and z, frac{x(alpha)+y(beta)+z(gama)}{x(beta)+y(gama)+z(gama)} =