Home
Class 11
MATHS
If 0<(x)<(pi) and cos x+sin x =1/2, then...

If `0<(x)<(pi)` and `cos x+sin x =1/2`, then tan x is equal to

A

1) `(1-sqrt7)/4`

B

2) `(4-sqrt7)/3`

C

3) `(-4+sqrt7)/3`

D

4) `(sqrt7+1)/4`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A={:[(a,0,0),(0,a,0),(0,0,a)],:}" then: "|A|*|adj.A|=

If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1) , is..... a) [(a,0,0),(0,(1)/(b),0),(0,0,c)] b) [((1)/(0),0,0),(0,(1)/(b),0),(0,0,c)] c) [(a,0,0),(0,(1)/(b),0),(0,0,(1)/(c))] d) [((1)/(a),0,0),(0,(1)/(b),0),(0,0,(1)/(c))]

If A[(2,0,3),(1,-1,2),(3,-2,0)] , then (adj A)A= ...a) [(-11,0,0),(0,-11,0),(0,0,-11)] b) [(11,0,0),(0,11,0),(0,0,11)] c) [(17,0,0),(0,17,0),(0,0,17)] d) [(-7,0,0),(0,-7,0),(0,0,-7)]

If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2),0,0),(0,(1)/(3),0),(0,0,(1)/(4))] then k+l+m=

If A = [[x,0,0],[0,y,0],[0,0,z]] , is a non-singular matrix then find A^-1 by elementary transformations, Hence, find the inverse of [[2,0,0],[0,1,0],[0,0,-1]]

If A is a square matrix such that A(adj A)=[(4,0,0),(0,4,0),(0,0,4)] , then (|adj (adj A)|)/(|adj A|) is equal to

If A=[[x,1],[1,0]] and A^2=I , then A^(-1) is equal to: a) [[0,1],[1,0]] b) [[1,0],[0,1]] c) [[1,1],[1,1]] d) [[0,0],[0,0]]

If A = [[x,0,0],0,y,0],[0,0,z]] is a non-singular matrix, then find A^-1 by elementary row transformations. Hence, find the inverse of [[2,0,0],[0,1,0],[0,0,-1]]