Home
Class 11
MATHS
In a triangle ABC angle A=pi/2 then cos^...

In a `triangle ABC` `angle A=pi/2` then `cos^2B+cos^2C=`............ A) `-2` B) `-1` C) 0 D) 1

A

-2

B

-1

C

0

D

1

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi and cos A = cos B cos C then cot B. cot C = ............. A) 1/3 B) 1 C) 2 D) 1/2

cos 20^(@) cos 40^(@) cos 80^(@)= ............ A) 1/2 B) 1/4 C) 1/6 D) 1/8

If tan A =1/2, tan B=1/3, then cos 2A= ........... A) sin B B) sin 2B C) sin 3B D) -sin 2B

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

The value of \int_{-pi/2}^(pi/2) x sqrt (cos x - cos^2 x) dx is........... A) 0 B) 1 C) 2 D) -1

If sin A + cos A =1, then sin 2A is equal to................ A) 1 B) 2 C) 0 D) 1/2

If 8 theta = pi, then cos 7 theta + cos theta is equal to ............ A) 0 B) 1 C) -1 D) 7

Maximum value of sin^4 theta + cos^4 theta is .............. A) 2 B) (1)/(2) C) -1 D) 1

(sin 85^(@)-sin 25^(@))/(cos 55^(@))= ............... A) 2 B) -1 C) 1 D) 0

cos(pi/7)cos((2pi)/7)cos((4pi)/7)= ................ A) 0 B) 1/2 C) 1/4 D) -1/8