Home
Class 11
MATHS
If A+B+C=pi then cosA/(sinBsinC)+cosB/(s...

If `A+B+C=pi` then `cosA/(sinBsinC)+cosB/(sinCsinA)+cosC/(sinAsinB)=`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=pi , then sin(A+B)=

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

If A+B+C=3pi/2 then cos2A+cos2B+cos2C=1-4sinAsinBsinC

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B + cos^(2) C is equal to

In triangleABC,A+B+C=pi ,show that cosA+cosB-cosC=4cos(A/2)cos(B/2)sin(C/2)-1

If A+B+C = 180^@ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =

If |(cos(A+B),-sin(A+B),cos2B),(sinA,cosA, sinB),(-cosA, sinA, cosB)|=0 then the value of B is -

If A+B +C=pi, then sin (A+B)= .............. A) sin A B) sin B C) sin A+sin C D) sin C

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)

In DeltaABC,(cosA)/(a)+(cosB)/(b)+(cosC)/(c) =