Home
Class 11
MATHS
In a triangle ABC, the value of sin A + ...

In a triangle ABC, the value of `sin A + sin B+ sin C` is

A

`4sin(A/2)sin(B/2)sin(C/2)`

B

`4cos(A/2)cos(B/2)cos(C/2)`

C

`4cos(A/2)sin(B/2)sin(C/2)`

D

`4cos(A/2)sin(B/2)cos(C/2)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

In triangle ABC, the value of sin 2A + sin 2B+ sin 2C is equal to

In triangle ABC, the value of sin 2A+sin 2B+sin 2C is equal to

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

In any triangle ABC. sin ^(2) ""A/2 + sin ^(2) ""B/2 + sin ^(2) ""C/2 is equal to

In triangleABC, a^(2) sin2C + c^(2) sin2A=

In triangleABC,A+B+C=pi ,show that sin^2A+sin^2B-sin^2C=2sinAsinBcosC

In a triangle ABC, if the sides are a=3, b=5, c=4, thenb the value of (sin ""B/2+ cos ""B/2) is equal to-

If in a DeltaABC, sin A: sin C = sin (A - B): sin (B-C), then a^(2), b^(2), c^(2) are in

If A+B+C = 180^@ then (sin 2A + sin 2B + sin 2C) / (cosA + cosB + cosC - 1) =