Home
Class 11
MATHS
Prove the following:cos(pi/4+x)+cos(pi/4...

Prove the following:`cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx`

A

`sqrt2sin^2x`

B

`sqrt2sinx`

C

`sqrt2cos^2x`

D

`sqrt2cosx`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 4cosxcos(pi/3+x)cos(pi/3-x)=cos3x

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)

Prove the following: cos(pi/2-x)cos(pi/2-y)-sin(pi/2-x)sin(pi/2-y)=-cos(x+y)

cos((3pi)/4+x)-cos((3pi)/4-x)=

Prove the following: cos(3pi/2+x)cos(2pi+x)[cot(3pi/2-x)+cot(2pi+x)]=1

Select and write the correct answer from the given alternatives in each of the following: cos(3pi/4+x)-cos(3pi/4-x) =………

Prove the following: (frac(cos(pi+x)cos(pi-x))(sin(pi-x)cos(pi/2+x)))=cot^2x

Prove the following: sqrt2cos(pi/4-A)=cosA+sinA

Prove the following: (frac(2cos4x+1)(2cosx+1))=(2cosx-1)(2cos2x-1)

cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x