Home
Class 11
MATHS
Prove the following:if 2sin(theta+pi/3)=...

Prove the following:if `2sin(theta+pi/3)=cos(theta-pi/6)`,then `tantheta+sqrt3=0`

A

`sqrt3`

B

`-1/sqrt3`

C

`1/sqrt3`

D

`-sqrt3`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: 2(sin^6theta+cos^6theta)-3(sin^4theta+cos^4theta)+1=0

Prove the following: sin^4theta+cos^4theta=1-2sin^2thetacos^2theta

Prove the following: sin^4theta+2sin^2thetacos^2theta=1-Cos^4theta

Prove the following: cottheta(1-cos2theta)=sin2theta

Prove the following: sqrt(frac(1-cos2theta)(1+cos2theta))=tantheta

Prove the following: tan(pi/4-theta)=(frac(1-tantheta)(1+tantheta))

Prove the following: (frac(1-cos2theta+sin2theta)(1+cos2theta+sin2theta))=tantheta

Prove the following: (frac(sin^3theta+cos^3theta)(sintheta+costheta))+(frac(sin^3theta-cos^3theta)(sintheta-costheta))=2

If sin theta = sqrt3 cos theta, then theta is equal to

IF 2 sin ( theta +(pi)/(3)) = cos (theta -(pi)/(6)), then tan theta = ............... A) sqrt3 B) -(1)/(sqrt3) C) (1)/(sqrt3) D) -sqrt3