Home
Class 11
MATHS
If A+B+C=pi and cosA=cosBcosC, then tanB...

If `A+B+C=pi` and `cosA=cosBcosC`, then tanBtanC is equal to

A

`1/2`

B

2

C

1

D

`-1/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C =pi and cos A = cos B cos C then cot B. cot C = ............. A) 1/3 B) 1 C) 2 D) 1/2

If A+B+C=180^@ , then tan A+tan B+tan C is equal to

If A and B are positive acute angles satisfying the equations 3 cos^2A+2cos^2B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

If A, B, C are any three sets, then A uu (B nnC) is equal to

If A+B+C=(3pi)/2 . Then cos 2A +cos 2B+cos2C is equal to ................. A) 1-4 cos A cos B cos C B) 4 sin A sin B sin C C) 1+2 cos A cos B cos C D) 1-4 sin A sin B sin C

If 8 theta = pi, then cos 7 theta + cos theta is equal to ............ A) 0 B) 1 C) -1 D) 7

If A-B=pi//4 , then (1+t a n A)(1-t a n B) is equal to.............. a. 2 b. 1 c. 0 d. 3

If A, B and C are any three sets, then A xx (B-C) is equal to