Home
Class 11
MATHS
The sum of the series sum(n=1)^inftysin(...

The sum of the series `sum_(n=1)^inftysin((n!pi)/720)` is

A

`sin(pi/180)+sin(pi/360)+sin(pi/540)`

B

`sin(pi/6)+sin(pi/30)+sin(pi/120)+sin(pi/360)`

C

`sin(pi/6)+sin(pi/30)+sin(pi/120)+sin(pi/360)+sin(pi/720)`

D

`sin(pi/180)+sin(pi/360)`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of the series sum _(n=1) ^(oo) sin ((n!pi)/(720)) is .............. A) sin ((pi)/(180)) + sin ((pi)/(360)) + sin ((pi)/(540)) B) sin ((pi)/(6)) +sin ((pi)/(30)) + sin ((pi)/(120)) + sin ((pi)/(360)) C) sin ((pi)/(6)) + sin ((pi)/(30)) + sin ((pi)/(120)) + sin ((pi)/(360))+sin ((pi)/(720)) D) sin ((pi)/(180))+ sin ((pi)/(360))

The value of the sum sum_(n=1)^13(i^n+i^(n+1)) , where i= sqrt(-1) , equals

Find: sum_(n=1)^oo 0.4^n

Find sum_(r=1)^n (2/3)^r

Find sum_(n=1)^oo (0.4)^n

Find sum_(r=1)^n (2r - 8)

The sum of the series 2 + 6 + 18 + ……… + 4374 is