Home
Class 11
MATHS
If tanalpha=(1+2^(-x))^(-1),tanbeta=(1+2...

If ``tanalpha=(1+2^(-x))^(-1)`,`tanbeta=(1+2^(x+1))^(-1)`, then `alpha+beta` equals

A

`pi/6`

B

`pi/4`

C

`pi/3`

D

`pi/2`

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals.................. A) pi/6 B) pi/4 C) pi/3 D) pi/2

If tanalpha=1/5 , tanbeta=1/239 , then the value of tan(4alpha-beta) is

If (1+tanalpha)(1+tan4alpha)=2,alpha in (0,pi/(16)), then alpha is equal to

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

If A=[(2,3),(1,-2)] and A^(-1)=alphaA, then alpha is equal to

If tanalpha=1/7 and tanbeta=1/3 , then cos 2alpha=

If int(1)/(sqrt(9-16x^(2)))dx=alphasin^(-1)(betax)+c , then alpha+(1)/(beta)=

Solev the following:If tanalpha=frac(1)(sqrt(x(x^2+x+1))),tanbeta=frac(sqrtx)(sqrt(x^2+x+1)) and tanr=sqrt(x^-3+x^-2+x^-1) then show that alpha+beta=r

If sin (alpha - beta) =1/2 and cos (alpha + beta) =1/2, where alpha and beta are positive acute angles, then alpha and beta are