Home
Class 11
MATHS
If z1 = 1-i and z2 = 2+4i, then im[frac...

If `z_1 = 1-i` and ` z_2 = 2+4i`, then `im[frac{z_1z_2}{z_1} = `

A

1

B

2

C

3

D

4

Text Solution

Verified by Experts

Promotional Banner

Similar Questions

Explore conceptually related problems

If z_1 = (4,5) and z_2 = (-3,2) , then frac{z_1}{z_2} equals

Let z_1 =2-i, z_2 = -2 +i, find Re[ frac{z_1 z_2}{z_1} ]

Let z_1 =2-i, z_2 = -2 +i, find Im[ frac{1}{z_1 z_2} ]

z_1 =2-i, z_2 =1+i, find abs(frac{z_1+z_2+1}{z_1-z_2+1})

If z_1=1-2i , z_2=1+i and z_3=3+4i , then [frac{1}{z_1}+frac{3}{z_2}][frac{z_3}{z_2}=

If z=(-1-i) , then arg z =

If abs(z_1) =1, ( z_1 != -1) and z_2 = frac{z_1 - 1}{z_1 +1} , then show that the real part of z_2 is zero.

Let z1 be a complex number with abs(z_1)=1 and z2 be any complex number, then abs(frac{z_1-z_2}{1-z_1barz_2}) =

Select and write the correct answer from the given alternatives in each of the following: if z_1 = 3 + 2i and z_2 = 5 - 4i , then |z_1 + z_2| is